Zusammenfassung
Hintergrund und Fragestellung: Der implantierbare Kardioverter-Defibrillator (ICD) ist die Therapie der Wahl bei
Postinfarktpatienten mit ventrikulären Tachykardien (VT). Gehäufte ICD-Entladungen
können jedoch problematisch sein, wenn sie durch Antiarrhythmika-Gabe nicht supprimierbar
sind. Wir widmeten uns der Frage, ob ventrikuläre Tachyarrhythmien, die konventionell
nur eingeschränkt behandelbar sind, mit modernen elektroanatomischen Mapping- und
Ablationstechniken besser beherrschbar sind.
Patienten und Methodik: 17 Patienten (69,5 ± 8 Jahre alt, 12 männlich) wurden in die Studie eingeschlossen.
Die Anzahl an ICD-Schockabgaben 3 Monate vor der Ablation betrug 21 ± 8 (Mittelwert
± Standardabweichung). Mittels elektroanatomischen Mappings (CARTOTM ) wurde bei 12 Patienten unter laufender, hämodynamisch tolerierbarer VT ein Aktivierungsmap
erstellt. In den übrigen 5 Fällen wurde bei so genannten „nicht-mappbaren” Tachykardien
ausschließlich im Sinusrhythmus ein Spannungsmap durchgeführt. Ziel war eine präzise
Charakterisierung des verantwortlichen Narbenbereichs, um anschließend mittels linearer
Ablationsläsionen das Substrat zu modifizieren und eine Reinduktion der VT zu verhindern.
Ergebnisse: Die Untersuchungszeit betrug 184 ± 9 Minuten, die Durchleuchtungszeit 19 ± 9 Minuten.
Die Anzahl der Ablationsimpulse waren 13 ± 9. In 15 Fällen (88 %) war die Ablation
der VT akut erfolgreich. Während einer Nachuntersuchungszeit von 8 ± 7 Monaten gab
es 2 Rezidive. In zwei Fällen entwickelten sich andere VT, in einem Fall kam es zu
Kammerflimmern. Es wurden keine Komplikationen beobachtet.
Folgerungen: Elektroanatomisches Mapping kombiniert mit einer individuellen linearen Ablationsstrategie
stellt eine sichere Methode dar, um bei Postinfarktpatienten rezidivierendes Auftreten
symptomatischer VT effektiv zu verhindern.
Summary
Background and aim of study: The implantable cardioverter defibrillator (ICD) is the therapy of choice for patients
with ventricular tachycardia (VT) after myocardial infarction. In some patients frequent
ICD shocks occur, often resulting in clinical problems, if antiarrhythmic drugs unsufficiently
suppress them. Our aim was to describe electro-anatomical mapping and ablation techniques
in patients with VTs, in which conventional strategy treatments have failed.
Patients and methods: 17 patients (69,5 ± 8 years, 12 male) were included. During 3 months before ablation
the number of ICD shocks was 21 ± 8 (mean +/- SD). Using an electro-anatomical mapping
system (CARTOTM ), activation mapping was performed in 12 patients during hemodynamically tolerable,
stable VT. In 5 cases with „non-mappable” VT only voltage mapping during sinus rhythm
was obtained. The aim was to characterize the underlying scar tissue precisely in
order to modify the substrate with an individual strategic linear lesion, thus preventing
re-induction of VT.
Results: Procedure time was 184 ± 9 minutes, fluoroscopy time totalled 19 ± 9 minutes. Lesion
lines were established with 13 ± 9 ablation pulses. In 15 patients (88 %) acute ablation
of the VT was successful. During a follow-up of 8 ± 7 months, 2 patients had a recurrence
of the VT. Two patients developed a VT with a different morphology. In another case
ventricular fibrillation occurred. No major complications were observed.
Conclusion: Electro-anatomical mapping combined with an individual linear ablation strategy is
a safe and effective method to prevent symptomatic VT in patients after myocardial
infarction.
Literatur
1
Brunckhorst C, Delacrétaz E, Duru F, Lemola C h, Rosenfeldt R, Candinas R.
Radiofrequenz-Katheterablation von ventrikulären Tachykardien.
Z Kardiol.
2002;
91
2-15
2
De Chillou C, Lacroix D, Klug D. et al .
Isthmus characteristics of re-entrant ventricular tachycardia after myocardial infarction.
Circulation.
2002;
105
726-731
3
Dornwarth U, Fiek M, Remp T. et al .
Radiofrequency catheter ablation: Different cooled and noncooled electrode systems
induce specific lesion geometries and adverse effect profiles.
PACE.
2003;
26
1438-1445
4
Epstein A E.
Turning up the heat on ventricular tachycardia ablation.
J Cardiovasc Electrophysiol.
2003;
14
682-684
5
Horlitz M, Schley P, Shin D -I. et al .
Circumferential pulmonary vein ablation for treatment of atrial fibrillation using
an irrigated-tipp catheter.
Am J Cardiol.
2004;
94
945-947
6
Hsia H H.
Substrate Mapping: The historical perspective and current status.
J Cardiovasc Electrophysiol.
2003;
14
530-533
7
Jaïs P, Haïssaguerre M, Shah D C. et al .
Successful irrigated-tipp catheter ablation of atrial flutter resistant to conventional
radiofrequency ablation.
Circulation.
1998;
98
835-838
8
Kautzner J, Cihak R, Peichl P, Vancura V, Bytesnik J.
Catheter ablation of ventricular tachycardia following myocardial infarction using
three-dimensional electroanatomic mapping.
PACE.
2003;
26
342-347
9
Kottkamp H, Hindricks G.
Catheter ablation of untolerated ventricular ventricular tachycardia - a new front
line.
European Heart Journal.
2002;
23
697-699
10
Kottkamp H, Wetzel U, Schirdewahn P. et al .
Catheter ablation of ventricular tachycardia in remote myocardial infarction: Substrate
description guiding placement of individual linear lesions targeting noninducibility.
J Cardiovasc Electrophysiol.
2003;
14
675-681
11
Simons G R, Klein G J, Natale A.
Ventricular tachycardia: Pathophysiology and radiofrequency catheter ablation.
PACE.
1997;
20
534-551
12
Sra J, Bhatia A, Dhala A. et al .
Electroanatomically guided catheter ablation of ventricular tachycardias causing multiple
defibrillator shocks.
PACE.
2001;
24
1645-1652
13
Shpun S, Gepstein L, Hayam G, Ben-Haim S A.
Guidance of radiofrequency endocardial ablation with real-time three-dimensional magnetic
navigation system.
Circulation.
1997;
96
2016-2021
14
Macle L, Jaïs P, Weerasooriya R. et al .
Irrigated-tipp catheter ablation of pulmonary veins for treatment of atrial fibrillation.
J Cardiovasc Electrophysiol.
2002;
13
1067-1073
15
Marchlinski F E, Callans D J, Gottlieb C D, Zado E.
Linear ablation lesions for control of unmappable ventricular tachycardia in patients
with ischemic and nonischemic cardiomyopathy.
Circulation.
2000;
101
1288-1296
16
Matsumoto N, Kishi R, Kasugai H. et al .
Experimental study on the effectivness and safety of radiofrequency catheter ablation
with the cooled ablation system.
Circ J.
2003;
67
154-158
17
Nakagawa H, Yamanashi W S, Pitha J V. et al .
Comparison of in vitro tissue temperature profile and lesion geometry for radiofrequency
ablation with a saline-irrigated electrode versus temperature control in a canine
tigh muscle preparation.
Circulation.
1995;
91
2264-2273
18
Pürerfellner H, Cihal R, Aichinger J, Martinek M, Nesser H J.
Pulmonary vein stenosis by ostial irrigated-tipp ablation: Incidence, Time Course
and Prediction.
J Cardiovasc Electrophysiol.
2003;
14
158-164
19
Soejima K, Stevenson W G.
Ventricular tachycardia associated with myocardial infarct scar.
Circulation.
2002;
106
176-179
20
Soejima K, Suzuki M, Maisel W H. et al .
Catheter ablation in patients with multiple and unstable ventricular tachycardias
after myocardial infarction.
Circulation.
2001;
104
664-669
21
Wrobleski D, Houghtaling C, Josephson M E, Ruskin J N, Reddy V Y.
Use of electrogram characteristics during sinus rhythm to delineate the endocardial
scars in a porcine model of healed myocardial infarction.
J Cardiovasc Electrophysiol.
2003;
14
524-529
Priv.-Doz. Dr. med. Marc Horlitz
Abteilung für Elektrophysiologie und Rhythmologie, Herzzentrum Wuppertal, Kardiologie,
Universitätsklinikum der Universität Witten/Herdecke, HELIOS Klinikum Wuppertal
Arrenberger Straße 20
42117 Wuppertal
Phone: 0202/8965708
Fax: 0202/8965707
Email: mhorlitz@wuppertal.helios-kliniken.de